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Soundscapes and deep learning enable
tracking biodiversity recovery in tropical
forests

Jörg Müller 1,2 , Oliver Mitesser1, H. Martin Schaefer3, Sebastian Seibold 4,5,
Annika Busse6, Peter Kriegel1, Dominik Rabl 1, Rudy Gelis7, Alejandro Arteaga8,
Juan Freile9, Gabriel Augusto Leite10, Tomaz Nascimento de Melo10,
John G. LeBien10, Marconi Campos-Cerqueira 10, Nico Blüthgen 11,
Constance J. Tremlett11, Dennis Böttger 12, Heike Feldhaar13, Nina Grella 13,
Ana Falconí-López1,14, David A. Donoso 14,15, Jerome Moriniere16 &
Zuzana Buřivalová 17

Tropical forest recovery is fundamental to addressing the intertwined climate
and biodiversity loss crises. While regenerating trees sequester carbon rela-
tively quickly, the pace of biodiversity recovery remains contentious. Here, we
use bioacoustics and metabarcoding to measure forest recovery post-
agriculture in a global biodiversity hotspot in Ecuador. We show that the
community composition, and not species richness, of vocalizing vertebrates
identified by experts reflects the restoration gradient. Two automated mea-
sures – an acoustic index model and a bird community composition derived
from an independently developed Convolutional Neural Network - correlated
well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both
measures reflected composition of non-vocalizing nocturnal insects identified
via metabarcoding. We show that such automated monitoring tools, based on
new technologies, can effectivelymonitor the success of forest recovery, using
robust and reproducible data.

Tropical forests play a key role in the global carbon cycle and are
central to Nature-based Climate Solutions, both in terms of climate
adaptation and mitigation1–4. They are also fundamental to global
biodiversity conservation, harbouring 62% of terrestrial vertebrate
species5. As such, restoring tropical forests is key to counteract two of
the major crises of our times, biodiversity loss and climate change.
With ambitious goals such as the New York and Glasgow Leaders’
Declarations onForests6, large-scale restoration projects are becoming
increasingly common7. Yet, their success is far from guaranteed and
often controversial8. Carbon storage and forest structure can be
restored within several decades if appropriate species are planted and
providing deforestation drivers have been addressed9. However, the
recovery of tropical forest fauna varies widely, and depending on taxa,
it is contentious and less predictable9–13. The complexity of ecosystem

processes, diversity of species, legacies of past land use, and the
idiosyncrasies of conservation complicate precise and generalizable
predictions of restoration success. Therefore, monitoring the perfor-
mance of individual restoration projects remains key to adaptive
management and evidence-informed conservation funding14.

To be effective, all conservation measures require cost-efficient
and robust biodiversity monitoring, which is lagging behind carbon
monitoring due in part to the lack of scalable, reproducible and cost-
effective sampling methodologies13,15. In particular, market-based
conservation mechanisms that may rely on forest restoration, such
as payments for ecosystem services, biodiversity offsets and credit
markets, as well as e.g. forest sustainability certification16, urgently
require a cost-effective, transparent and generalizable biodiversity
measurement and monitoring tool. Such a tool should facilitate

Received: 28 April 2023

Accepted: 7 September 2023

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: Joerg.Mueller@npv-bw.bayern.de

Nature Communications |         (2023) 14:6191 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1409-1586
http://orcid.org/0000-0002-1409-1586
http://orcid.org/0000-0002-1409-1586
http://orcid.org/0000-0002-1409-1586
http://orcid.org/0000-0002-1409-1586
http://orcid.org/0000-0002-7968-4489
http://orcid.org/0000-0002-7968-4489
http://orcid.org/0000-0002-7968-4489
http://orcid.org/0000-0002-7968-4489
http://orcid.org/0000-0002-7968-4489
http://orcid.org/0000-0002-0613-7804
http://orcid.org/0000-0002-0613-7804
http://orcid.org/0000-0002-0613-7804
http://orcid.org/0000-0002-0613-7804
http://orcid.org/0000-0002-0613-7804
http://orcid.org/0000-0001-6561-5864
http://orcid.org/0000-0001-6561-5864
http://orcid.org/0000-0001-6561-5864
http://orcid.org/0000-0001-6561-5864
http://orcid.org/0000-0001-6561-5864
http://orcid.org/0000-0001-6349-4528
http://orcid.org/0000-0001-6349-4528
http://orcid.org/0000-0001-6349-4528
http://orcid.org/0000-0001-6349-4528
http://orcid.org/0000-0001-6349-4528
http://orcid.org/0000-0002-9593-7968
http://orcid.org/0000-0002-9593-7968
http://orcid.org/0000-0002-9593-7968
http://orcid.org/0000-0002-9593-7968
http://orcid.org/0000-0002-9593-7968
http://orcid.org/0000-0002-7542-4030
http://orcid.org/0000-0002-7542-4030
http://orcid.org/0000-0002-7542-4030
http://orcid.org/0000-0002-7542-4030
http://orcid.org/0000-0002-7542-4030
http://orcid.org/0000-0002-3408-1457
http://orcid.org/0000-0002-3408-1457
http://orcid.org/0000-0002-3408-1457
http://orcid.org/0000-0002-3408-1457
http://orcid.org/0000-0002-3408-1457
http://orcid.org/0000-0001-5730-7546
http://orcid.org/0000-0001-5730-7546
http://orcid.org/0000-0001-5730-7546
http://orcid.org/0000-0001-5730-7546
http://orcid.org/0000-0001-5730-7546
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41693-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41693-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41693-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41693-w&domain=pdf
mailto:Joerg.Mueller@npv-bw.bayern.de


scalability in alignment with UN targets and help prevent green-
washing: without the requirement and tool to monitor biodiversity,
carbon-focused actors may plant simple, monoculture plantations,
instead of forests that have the potential to become biodiverse and
resilient with proper restoration.

Many taxonomic groups, including amphibians, birds, mammals,
and insects include a considerable proportion of species that vocalize
or otherwise use sound to communicate, making acoustic monitoring
of these groups a particularly promising tool for biodiversity
responses17,18. Sound diversity, expressed via the Soundscape Satura-
tion Index, declined and became less synchronized with forest frag-
mentation and loss in Papua New Guinea and Borneo19,20. In Puerto
Rico, soundscapes became impoverished and subsequently recovered
after a major hurricane, reflecting the reassembly of the vocalizing
fauna21. Likewise, birdvocalizations and soundscapeswerealteredwith
forest degradation from selective logging in Southeast Asia22. These
studies show that forest loss and degradation can be tracked by using
soundscapes, but it remains unclear if soundscapes reliably track the
restoration of faunal biodiversity in tropical forests23.

Many acoustic indices have been developed to reduce the com-
plexity of multidimensional, information-rich soundscapes to an
interpretable level24,25. Such indices describe different aspects of the
soundscape, from signal-to-noise ratio, variation in frequency, to
complexity and entropy25,26. Currently, no single best index exists, as
most indices have been tested only in a handful of habitats or land use
contexts, and when used individually, they often yielded mixed
results27,28. For example, some studies observed a strong correlation
between theAcousticComplexity Index, ameasure for biotic activity29,
and both the number of avian vocalizations and species richness24,29,30,
while others reported inconsistent results31,32 or no correlation33,34. We
hypothesize that a combination of indices may best explain the com-
position and richness of the recovering vocalizing animal community,
as some indices focus on the sound coverage along the frequency
range (Soundscape Saturation) whereas others quantify the sound
diversity over time (Acoustic Complexity Index, Temporal Entropy,
Entropy of Frequency) or simply the activity (Events/Second).

Apart from acoustic indices, techniques for discerning specific
animal species from soundscape recordings are also being
developed35. Out-of-the-box models for species identification are
typically less data hungry, computationally simpler in design (e.g.
relying on MCMC vocal separators), but depend on human-guided
feature engineering (i.e. “supervised machine learning”), introducing
potential subjectivity that could hinder performance, particularly with
diverse or noisy datasets. More recently, artificial intelligence deep
learning models, such as Convolutional Neural Networks (CNN), have
been developed to identify birds, bats or amphibians36–40. They tend to
bemore flexible andmay require fewer person hours to generate well-
performing models. When such models become available for many
species in a region, species communities could be determined auto-
matically, which has however not been sufficiently investigated to
date. A major bottleneck for machine learning approaches, including
CNNs, is the need of large training datasets. This is particularly chal-
lenging in the hyper-diverse communities of tropical forests41. Yet, it is
increasingly feasible to identify entire vocalizing communities to
species level due to the accumulation of labelled acoustic datasets and
progress in the development of tools (e.g. Arbimon, BirdNET40,42).
Hence, the combination of innovative methods may allow encom-
passing biodiversity assessments across multiple sites, leveraging
community, functional, and phylogenetic diversity measures. As
community composition has been shown to predict environmental
gradients43,44, we hypothesize that community composition derived
fromCNNmodels will be correlatedwith recovery gradients in tropical
forests.

To pioneer the assessments of biodiversity recovery in tropical
forests, we sampled soundscapes simultaneously with the same

devices and protocol in 43 plots along a recovery gradient in a space-
for-time substitute approach (Fig. 1). Our plots in the Ecuadorian
lowland Choco comprised active cacao plantations and pastures,
abandoned cacao andpastureswith forest recovery for 1–34 years, and
old-growth forests.We carried out (i) manual, expert-led identification
of vocalizing birds (183 species), mammals (3 species, excluding bats)
and amphibians (41 species) within simultaneous time windows cov-
ering 28min in all plots across two days, (ii) an acoustic index analysis
for two weeks of recordings including the days analyzed by the
experts, and (iii) for the same time span a presence and absence of
75 selected bird species identified with a CNN model, trained on an
independent dataset. To test the generality of our results, i.e., that
community composition indeed tracks faunal recovery, we (iv) used a
sound-independent dataset by sampling nocturnal insects with
autonomous light traps and assessed insect diversity using meta-
barcoding. As fewer than 1% of species were non-Insecta, herafter we
refer to this dataset as insects. Insect diversity, in general, has been
shown to correlate with bird, frog andmammal diversity45. Our results
demonstrate that automated bioacoustics monitoring can be used to
track tropical forest recovery of animal communities from agricultural
abandonment beyond vocalizing vertebrates, suggesting its broad use
to assess restoration outcomes.

Results and discussion
We first investigated how well the total vocalizing vertebrate species
community identified by experts represents the forest recovery gra-
dient. We then modelled the community composition, species rich-
ness, the richness of species observed in our old-growth plots (old-
growth species hereafter), and the composition of nocturnal insects,
using the two data types derived from soundscapes: a set of acoustic
indices and the first principal component (PC) of a CNN-derived bird
community NMDS map (first community axis, hereafter). As the main
axis of community composition (Fig. 2a) revealed a linear gradient
from pastures to old-growth forests, we used linear models in all fur-
ther analyses as the most parsimonious approach.

Vocalizing vertebrate communities represent the recovery
gradient
At our study sites in the Choco, Ecuador (Fig. 1), the community of
vocalizing vertebrates, as identified by experts, showed a clear gra-
dient along the first axis of a non-metric multidimensional scaling
(NMDS) ordination (Fig. 2a). Abandoned cacao plantations initially
recovered vertebrate diversity faster than abandoned pastures, but
converged during later succession (Fig. 2a). Most old-growth forests
were rather distinguishable in community composition from regen-
erating sites along the first ordination axis, with the exception of one
pasture regenerating for 34 years (Fig. 2a). This is in contrast to the
earlier broader overlap of bird communities in regenerating tropical
dry forests with old-growth reference sites46. Total species richness
steadily decreased along the recoverygradient in linewith one study in
tropical dry forests47, but in contrast to another study on birds46. One
possible explanation for this high richness in agriculture plots might
be that more species transit through these open sites. Another expla-
nation might be spill-over from surrounding forests in the small-scale
agriculture of our study region, supported by old-growth species also
in pastures (Fig. S1). In contrast, the richness of old-growth-specific
species increased over time (Fig. S1).

The positive correlation between recovery time and community
compositionmay raise the question ofwhy not just use time elapsed as
a proxy for biodiversity recovery, such as sometimes donewith carbon
accumulation13. From our results, we conclude against simply using
time for two reasons. First, we found a substantial overlap of species
composition between the early and late recovery stages, with a most
pronounced change in the early phase. This demonstrates a rapid shift
of species compositions after abandonment and a slowing down of
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community changes in the later stages. Furthermore, the high varia-
tion in the early stages of recovery in our study systems might be
affected by variation in forest cover in the surrounding as recently
shown as relevant for predictability of forest regeneration48. Second,
additional anthropogenic impacts as logging or hunting20,49 can
strongly affect the local fauna, but are not represented by
recovery age.

Sound diversity as measure of biodiversity
To assess which type of information derived from soundscapes best
reflects the faunal recovery at our sites, we estimated the explanatory

power of (i) a combination of five selected acoustic indices and (ii) the
first community axis of a CNN-derivedbird community in fourmultiple
regression models with the following diversity response variables,
determined by expert analysis: (1) the first community axis of species
composition of vocalizing vertebrates, (2) total species richness,
(3) richness of old-growth species, and (4) the first community axis of
nocturnal insect communities (Table 1). Acoustic indices individually
had low explanatory power, but we found that a combination of
acoustic indices had a high explanatory power for the vertebrate
community composition (adj. R² = 0.62), good explanatory power for
richness of old-growth species and nocturnal insect composition, but

Fig. 1 | Map of the study area, the sampling locations and sampling devices to
test soundscapes and metabarcoding for monitoring of restoration success in
tropical forests; top left sound recorder, top right light trap. The map was
created in QGIS using the ESRI “Satellite” basemap (Scale Not Given, January 23rd

2023, https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/Map-
Server/tile/{z}/{y}/{x}) and the “Stamen Terrain Background” and “Stamen Terrain
Lines” basemaps (Scale Not Given, January 23rd 2023, https://maps.stamen.com/.
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low explanatory power for total vertebrate richness (Table 1). Our
findings add to the growing literature that shows that using a set of
acoustic indices instead of single ones is better for estimating
biodiversity50.

Despite the potential of acoustic indices as predictors of voca-
lizing vertebrate diversity, these do not distinguish between late
recovery and old-growth communities, as seen by comparing
observed versus predicted values in Fig. 2b. This lack of sensitivity
could be partially due to acoustic indices saturating at high diversity
values16,51. For example, species in functionally richer landscapes may
have smaller acoustic ‘niches’, due to competition for acoustic space26.
This could result in additional species not substantially changing index
values.

In the next step, we applied an independent artificial intelligence
model for bird species identification, developed and trained in the
region of our study prior to our sampling. Despite the model identi-
fying only ~25% of species detected by the experts in our data, the
model-derived first community axis was the single best predictor for
expert-derived community composition. With adjusted R² of 0.69, it
outperformed the combination of acoustic indices, demonstrating
that community composition estimated from CNN is a promising way
to track faunal recovery of tropical forest communities (Fig. 3a).
Including a higher proportion of vocalizing species, including amphi-
bians and mammals, would presumably further increase our ability to
track faunal recovery through sound. This conjecture is supported by
an even higher explanatory value (R² = 0.85) of community composi-
tion when restricting birds species to only those represented in both
the expert-led and the CNN identification (n = 49, Fig. 3c).

Crucially, both automated sound-based measures (indices and
CNN) had a good explanatory power even for species that are not part
of the vocalizing tropical animal community, such as the largely silent
nocturnal insects (Fig. 3b). In further testing, we excluded the 13
vocalizing insect species from the families Tettigoniidae, Gryllidae,
Cicadidae, present in our light traps, which did not change the axis of
species composition (Pearson correlation rho=0.986), indicating that
light trap assemblages predominantly represent non-vocalizing
insects. Acoustic indices might thus serve as powerful surrogates for

tropical faunal biodiversity including important functional groups,
suchaspollinators or decomposers. Our results demonstrate thatboth
products from soundscapes recordings and analyses—a set of acoustic
indices and CNN-derived species composition—are suitable for track-
ing faunal recovery across a few decades. Moreover, we show that
measures based on composition are more powerful than richness
alone, as known for insect communities in tropical forests52.

As vocalizing vertebrate communities progressed towards old-
growth forest conditions, the soundscapes showed increasing
Soundscape Saturation and Entropy of Frequency, but decreasing
Acoustic Complexity and Events per Second from pastures to old-
growths (Fig. 4 and Table 1). The latter concurswith the observation of
increasing acoustic complexity with increasing number of
species24,29,30. In our dataset, we found more species and more vocali-
zations in agricultural plots (Fig. 4 and Fig. S2). More species might
transit through these open sites, or thismight bedue inpart to a higher
vertical structure complexity of old-growth forests: our recorderswere
always placed about 2 metre above ground, possibly underestimating
canopy species particularly in old-growth plots with very large trees.
Additionally, denser vegetation in old-growth forests may limit sound
propagation53. However, bird call playback experiments in other
countries revealed similar patterns for different recovery stages in
tropical forests, which supports similar probabilities of recording47.

However, we would also expect attenuation biases in recovering
forests, which have higher stem density54. Overall, we therefore think
that the sound attenuation bias is minimal in our study system. The
increase of Soundscape Saturation along the recovery gradient (Fig. 4)
could indicate that more mature forests have an acoustically more
diverse communities, resulting in a broader coverage of the frequency
spectrum. This is in line with the observed decrease of Soundscape
Saturation with fragmentation19.

The total richness of vocalizing vertebrates decreased with
Soundscape Saturation and increased with Events/Second, both in line
with fewer species recorded in old-growth plots (Table 1). The richness
of species recorded in old-growth plots increased with the Entropy of
Frequency and decreased with Acoustic Complexity reflecting low
species richness but a functional highly diverse community in old-
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Fig. 2 | Community composition of vocalizing vertebrates identifiedby experts
from audio files and predictions from acoustic indices. a NMDS plot shows a
shift in the species composition along the recovery gradient (right to left, colours
display land-use and recovery stage as well as old-growth category); b First axis of
observed (expert identification) and predicted (four acoustic indices, Table 1)
values of community composition. Pasture (P) and Cacao (C) = active agriculture
plots, Reg I = early regeneration forests (1–19 years), Reg II = late regeneration

forests (20-37 years), and Oldgr = old-growth forests. Asterisks(***) indicate highly
significant difference (p <0.001) between both methods within a category of the
recovery gradient based on a linear mixed-effects model (n = 43 biologically inde-
pendent plots). The boxplots show the median, and the 25th and 75th percentile,
the whisker show the minimum and maximum values not exceeding a distance of
1.5 × interquartile range, values beyond are plotted as single points.
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growth forests (Table 1). With the community composition of insects
shifting towards old-growth forests, Entropy of Frequency, Sounds-
cape Saturation and Events per Second all increased.

The communities of vocalizing vertebrates, as well as the com-
munity of nocturnal insects, were highly correlated with the main axis
of species composition derived from CNN (Fig. 3). Our data show not
only that nocturnal insects recover quickly with forest regeneration
but that CNN models track that recovery well. Species composition,
rather than species richness, thus serves as an indicator of forest
recovery. This is in line with a recent meta-analysis using a global data
set of audio-recordings paired with manual avifaunal point counts28.
Even here, acoustic indices were not explained simply by species
richness, but soundscape changes indicated changes in community
composition.We therefore posit thatmore emphasis should be placed
on species composition rather than solelyon species richness, and that
species composition identified from sound via experts, or now
increasingly via artificial intelligence, is a powerful tool that can be
substituted by sound indices where species-based analyses are not
available. Specifically, the vocalizing vertebrate communities, sampled
by audio recorders, can therefore serve as indicators for the faunal
recovery of tropical forests.

In summary, our results show that soundscape analysis is a pow-
erful tool to monitor the recovery of faunal communities in hyper-
diverse tropical forest. Soundscape diversity can be quantified in a
cost-effective and robust way across the full gradient from active
agriculture, to recovering and old-growth forests. The promising
results from our artificial intelligence application, albeit with only 25%
of the bird species that were identified by experts, show the potential
of automated identification of species communities from sound data.
Importantly, we document that acoustic indices track the quick and
consistent biodiversity recovery even in complex, hyper-diverse eco-
systems such as tropical forests, independent of land use legacies. To
generalize the soundscape approaches, Artificial intelligence-models
for vocalizing animals have to be improved globally and their appli-
cation to environmental gradients as the recovery gradient in our
study has to be validated regionally. Therefore, we urge the con-
servation community to prioritize the creation of global sound repo-
sitories for taxa beyond birds, based on which machine learning
models can be rapidly improved and extended. Implementing passive,
soundscape-based biodiversity monitoring in tropical ecosystems
without relying on expert knowledge would allow conservation man-
agers to assess forest recovery cost-effectively and to better quantify
the conservation value of their protected areas. The standardized
collection of raw sound environmental data, such as soundscapes,
creates a reproducible comprehensive long-term data basis in biodi-
versity monitoring that is easier to store in the long term than many

specimen collections and largely independent of the collector. This, in
combination with making soundscape data publicly accessible, could
also help to reduce greenwashing in carbon-focused conservation.
Being able to directly quantify biodiversity, rather than relying on
proxies such as growing trees, encourages and allows external
assessment of conservation actions, and promotes transparency. Fur-
thermore, well-documented datasets can be re-analyzed retro-
spectively using the latest biostatistical methods. They can empower
practitioners and funders to quantify the biodiversity gains in regen-
erating tropical forests, a crucial prerequisite for monetizing biodi-
versity objectives associatedwith carbon removal, allowingmarkets to
address the joint biodiversity and climate crises of our times. Restoring
tropical forests so that they provide carbon and biodiversity benefits
will increase the likelihood that nature-based solutions will result in
resilient, biodiverse ecosystems and not empty carbon farms.

Methods
Study site and design
We selected 43 study plots (Fig. 1) within the research unit REAS-
SEMBLY (www.reassembly.de)—a collaborative Ecuadorian-German
research approach to study predominantly the shift of species net-
works along a tropical recovery gradient. Our plots followed a
chronosequence of forest recovery, and included (i) active pastures
and cacao plantations; (ii) formerly used pastures and plantations,
which were secondary forests regrowing for 1 to 34 years at the time
of the study, and (iii) old-growth forests, with no indication of recent
use by humans. The plots were between 159 and 615m a.s.l. All
recovery processes were natural after abandonment, without active
planting.

Audio data collection
In October 2021, we deployed one Bioacoustic Recorder (BAR-LT,
Frontier Labs, Meanjin, Australia) with one omnidirectional micro-
phone facing down at a height of ~1.70m above ground (Fig. 1), at each
of the 43 plots. The recorders were programmed to record 2min every
15min throughout the day for two weeks (Julian day 299-314 in 2021)
concurrently, with a sampling rate of 44.1 kHz.

Expert-based community composition
Experts identified birds and mammals from 2-minute files recorded at
06:00, 06:30, 07:00, 12:00, 16:00, 17:00, 18:00 h from 2 days without
heavy rain, covering the high activity phases of birds and vocalizing
mammals (howler monkeys) around dusk and dawn, as well as few
minutes during the day to cover flock activities. Additional bird data
were evaluated at 06:15, 06:45, 07:15, 12:15, 16:15, 17:15, 18:15 h.
Amphibian data were evaluated in 2-min time windows starting at

Table 1 | Acoustic indices as predictors of scores of the first axis of ordination of vertebrate communities, the richness of
vertebrates per plot, only vertebrates observed in old-growth plots, and the scores of the first axis of an ordination from light
trapping insect communities using a multiple linear regression model (see “Methods“ for explanations of acoustic index
calculation)

Response variables

Vertebrate community
axis 1

Vertebrate
richness

Vertebrate old-growth
richness

Nocturnal insect communities
axis 1

Adjusted R² 0.62 0.20 0.45 0.42

Acoustic indices (predictor variables) Est. ± SE t-val. Est. ± SE t-val. Est. ± SE t-val. Est. ± SE t-val.

Temporal entropy 3.7 ± 2.2 1.66 −2.4 ± 1.8 −1.37 0.3 ± 1.7 0.19 0.0 ± 1.2 0.01

Acoustic complexity −23.7 ± 8.0 −2.95 9.8± 6.5 1.51 -14.3 ± 6.1 −2.36 −5.2 ± 4.4 −1.18

Entropy of frequency 3.7 ± 1.3 2.94 −0.8± 1.0 −0.74 2.0 ± 1.0 2.09 1.5 ± 0.7 2.11

Soundscape saturation 3.2 ± 0.7 4.54 −1.6 ± 0.6 −2.90 0.9± 0.5 1.78 1.2 ± 0.4 3.06

Events/Second −0.8 ± 0.2 −3.62 0.3± 0.2 2.04 -0.3 ± 0.2 −1.69 −0.3 ± 0.1 2.33

Richness values were log-transformed and modelled with the same linear models to make adj. R² comparable. Estimates, standard errors and t-value are shown; bold t-values indicate significant
predictors (p < 0.05). For spatial independence of all model residuals see Supplementary material.
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00:00, 03:00, 05:00, 09:00, 18:45, 20:30 h reflecting times of their
peak activity after expert evaluation of some selected plots over the
whole day. Here we used one day with rain and one without rain
(Fig. S1).

The metric “frequency per plot” was calculated by counting files
containing a recording of a species; for more details see Supplement.
Mammal and bird species were identified by one of us (R.G.). To assess
inter-observer bias, additional sound files shifted by 15min were
evaluated by another bird expert (J.F.). Both datasets provided similar
results (Fig. S3).

Acoustic index calculation
Acoustic indices were calculated by using the toolbox
“AnalysisProgram.exe”55 for each 2-min recording separately on the
high performance cluster of the University of Würzburg. Soundscape
Saturation, Acoustic Diversity Index, Bioacoustic Index, and Acoustic
Evenesswere calculated fromTowsey’s amplitude spectrumaccording
to Burivalova20 and Ross56. We used the R-package “stringr” for data
pre-processing57 in R version 3.6.3. From a number of established

soundscape characteristics24, we selected five independent indices
representing different aspects of sound diversity (Table 1).

CNN-based community composition
For automated species identification, we applied a multi-label audio
recognition model. The algorithm we used was developed indepen-
dently from this study in the framework of Arbimon42. The model had
been previously trained to recognize 115 common song classes pro-
duced by 112 species, of which 77 might occur in our study region
(Supplementary Data 1). Data used to train the CNNmodel came from
401,685 1-min soundscape recordings previously collected in a sepa-
rate study from 55 sites in and around Mashpi Rainforest Biodiversity
Reserve and Canandé Reserve in the Ecuadorian Chocó Forest
(500–2300m a.s.l.). Recordings for training were collected between
January and December 2019, using Audimoth devices58 and Guardian
recorders (https://rfcx.org/guardian). Audiomoths were placed on a
tree at the height of 1.5m and programmed to record 1min of audio
every 10min for a total of 144 recordings per day at a sampling rate of
48 kHz. Guardian recorders were deployed at the canopy of trees at a
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Fig. 3 | CNN-derived bird community composition as predictors for birds and
insect communities.CNN-bird community versus (a) first community axis of total
vocalizing vertebrates by experts (the scores of the first NMDs axis in Fig. 2a and all
other ordinations were mirrored to create an ascending recovery gradient from
pastures to old-growth forests), versus (b) first nocturnal insect community axis by

metabarcoding of light trap samples along the forest recovery gradient and ver-
sus (c) Expert-derived bird community composition based on 49 species shared in
expert and CNN predictions. R² values represent adjusted-R² from a linear
regression; polygons represent 95% confidence intervals of themeans of the linear
regression.
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height of ~30mandprogrammed to record continuously at a sampling
rate of 12 kHz.

Training data for the audio recognition model was created using
the method described in LeBien et al.59. The initial training dataset
consisted of a set of positive and negative samples for each song class,
collected using a template matching analysis. The positive and nega-
tive samples canbe considered truepositives and false positives froma
rudimentary single-class detector, respectively. Thus, for each training
sample, the presence or absence of only a single class is known.
However, it was assumed that each class is only present in its positive
samples. This was expected to greatly increase the amount of infor-
mation in the training data by introducing a large amount of true
negative labels, at the expense of possibly introducing a comparatively
insignificant amount of false negative labels. The audio training data
was upsampled to 16 kHz if needed. Spectrograms were computed
from three-second audio segments using a short-time Fourier trans-
form (STFT) with an STFT window length of 0.1 s, a hop length of
0.025 s, a frequency range of 50Hz to 8 kHz and 224 frequency bins.
Spectrogram amplitudes were log-scaled, and mel-scaling was applied
to the frequency axis.

Data augmentation was applied by combining random pairs of
samples in each training data batch. This increases variation in the
training data, and allows control over the number of samples per class
formulti-label training. For each sample A in a batch, another sampleB
is randomly selected. The spectrogram of sample B is cropped in fre-
quency to the band containing the labelled species’ call (i.e. the single

species with known presence or absence). The frequency band of each
class was estimated visually by experts during data labelling. Sample
B’s spectrogram is then blended with the same frequency band of A’s
using an element-wise maximum operation. The labels of A and B are
combined with the same operation. All song classes with at least 10
positive training examples were included in themodel. The number of
positive samples collected per class was highly imbalanced, ranging
from <10 to >1000. Random resampling was applied to compensate
for the data imbalance. The target number of positives per class was
set to an intermediate value of 200. The target number of negatives
was set at amoderate value of 50 to avoid a very low ratio of positive to
negative training labels per class, considering the assumption applied
to the labels.

The final layers of the MobileNetV2 model that learn a predictive
model from the extracted convolutional layer features were replaced.
Our model’s final layers consisted of an average pooling of the
extracted features, a dropout layer, and a dense layer with a sigmoid
activation to produce the output scores. Binary cross-entropy loss and
the Adam optimizer60 with an initial learning rate of 0.001 were used.
Themodel was trained for one hundred epochs with a batch size of 16.
The model was validated against a set of 200 one-minute audio files,
each labelled with the set of present classes. The best model weights
were chosen based on the best class-wise mean average precision on
the validation dataset. The model was finally evaluated against a
dataset including the validation set and an additional, independent
200 expert-labelled one-minute recordings from similar habitats as in
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Fig. 4 | Partial effect plots for four acoustic indices explaining the community
composition of vocalizing vertebrates in 42 plots along the recovery gradient
frompastures to old-growths (the inverse axis of the NMDs axis in Fig. 2a), for

statistics of the full model see Table 1. Top left the partial effect of acoustic
complexity, top right of entropy of frequency, down left of soundscape saturation
and down right of event per second.
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our study (Supplementary Data 1). The mean average-precision across
the classes of the best model was 86.9%. This score represents the
average precision across all thresholds, using the changes in recall
between each consecutive threshold as weights for the average. At an
output score threshold of 0.5, the model achieved a mean F1-score
across classes of 77.2%, a mean precision of 82.9% and amean recall of
80.7%. For a threshold of 0.8, the mean F1-score, precision, and recall
were 78.9%, 89.4%, and 77.5%, respectively. Supplementary Data 1
contains species-specific scores for each of these metrics. There is no
strong bias toward the most common classes (Pearson correlation
ρ = 0.07, p = 0.48, Precision 0.8 ~ log(Presences)).

The model takes a three-second waveform as input and outputs
an independent score for each song class. The output score represents
the model’s confidence that the class is present in the sample. First,
input sound clips are converted to spectrogram images for feature
extraction. A MobileNetV2 convolutional neural network (CNN) pre-
trained on the ImageNet dataset was fine-tuned on spectrograms of an
independent audio training data61. Models pre-trained on ImageNet
are configured to extract a variety of generic image features that can
be useful for spectrogram recognition40. In comparisonwith randomly
initialized models, models fine-tuned with transfer learning generally
require less time and training data for strong performance. While pre-
trained models for audio recognition have recently been proposed
(YAMNet, VGGish62), they are trained on sounds of limited time dura-
tion and resolution (rather than on images of sounds), which can
impact their applicability to noisy and complex signals such as found in
biodiverse soundscapes. Random resampling and data augmentation
were applied to compensate for data imbalance and improve model
generalization. The algorithm evaluated each input audio file in our
study by scoring every three-second window of audio with a one-
second shift between window start times. With this model, we identi-
fied 73 species in our 43 plots (Tab. S1). Next, we predicted species
presence in each file based on a 0.5 and 0.8 output score threshold for
eachof the 73 species. Both revealed very similar species communities,
therefore, we used themore conservative threshold of 0.8 to declare a
species as present in a specific file.

Light traps
During the same period of the sound sampling, we set up an autono-
mous light trap for one night per plot. These traps were equippedwith
an LED light optimized for insect sampling powered by a Power bank
(LepiLED Mini Switch 0.65, UV-mode switched off, Brehm, Jena
Germany63). This kind of light attracts predominantly Lepidoptera and
Dipteran.However, with thewide rangeof species attracted, it is oneof
the most efficient methods for tropical nocturnal insects, even col-
lecting some vocalizing insect species as cicadas. For 8 h after dusk,
insects were collected in a jar mounted under a funnel and killed by
chloroform. Insect collections were done following Ecuadorian Laws
under Contrato Marco MAE-DNB-CM-2019-0115 and Export Permit
007-2022-EXP-CM-FAU-DBI/MAAE.

We removed large-bodied Lepidoptera from the Saturnidae and
Sphingidae families (moths) as well as Coleoptera (beetles) indivi-
duals for taxonomic identification. The remaining insect bulk was
frozen and transferred to 96% undenatured ethanol. The samples
were then passed through an 8-mm sieve, thereby separating larger
and smaller insects, opening the avenue for using read numbers for
abundance estimates64. This was done to increase the likelihood of
detecting small-bodied and rare species in samples, as individuals
with a larger biomass provide disproportionate amounts of DNA and
can therefore be over-represented when metabarcoding bulk
samples65. Size filtering is only one tool to improve the balance
between small and rare species on the one hand and large and
abundant species on the other hand in bulk samples, and even this
cannot guarantee all insects be detected. Here even species belong-
ing to the same genus may be differently impacted by the same DNA

extraction/amplification/sequencing procedure, generating a differ-
ence in read numbers, which may result in loss of rare species66.
However, our approach was standardized for all samples. The CO1-5P
(mitochondrial cytochrome oxidase 1) target region was sequenced
for collected bulk samples, following the laboratory and bioinfor-
matic pipelines reported in Hausmann et al.67 and as described in the
following.

High-throughput sequencing
Preservative ethanol was removed and the mixed arthropod samples
were dried overnight in a 60–70 °C oven to evaporate the residual
ethanol. The dried arthropods were then homogenized with stainless
steel beads within a FastPrep 96 system (MP Biomedicals). DNA was
extracted from all samples by incubating them in a 90:10 solution of
animal lysis buffer (buffer ATL, Qiagen DNEasy tissue kit, Qiagen, Hil-
den, Germany) and proteinase K. After an overnight incubation in a
56 °C oven, the samples were left to cool to room temperature. DNA
wasextracted from200-µL aliquots using theDNEasyblood& tissue kit
(Qiagen) following themanufacturer’s instructions.Multiplex PCRwas
performed using 5 µL of extracted genomic DNA, Plant MyTAQ (Bio-
line, Luckenwalde, Germany) and high-throughput sequencing (HTS)-
adapted mini-barcode primers targeting the mitochondrial CO1-5P
region (mlCOIintF – 5′-GWACWGGWTGAACWGTWTAYCCYCC-3′;
dgHCO2198–5′-TAAACTTCAGGGTGACCAAARAAYCA-3′; following
Leray et al.68—also see Morinière et al.69,70.

Amplification success and fragment length were determined
using gel electrophoresis. The amplified DNA was cleaned and each
sample was resuspended in 50 µL of molecular water. Illumina Nextera
XT (Illumina Inc., San Diego, USA) indices were ligated to the samples
in a second PCR, conducted at the same annealing temperature as in
the first but with only seven cycles. Ligation success was confirmed by
gel electrophoresis. DNA concentrations were measured using a Qubit
fluorometer (Life Technologies, Carlsbad, USA), and the samples then
combined into 40-µL pools containing equimolar concentrations of
100ng each. The pooled DNA was purified using MagSi-NGSprep Plus
beads (Steinbrenner Laborsysteme GmbH, Wiesenbach, Germany).
The final elution volume was 20 µL. HTSwas performed on an Illumina
MiSeq using v3 chemistry (2*300bp, 600 cycles, maximum of 25 mio
paired-end reads).

Bioinformatics
Paired-ends were merged using the -fastq_mergepairs utility of the
USEARCH suite v11.0.667_i86linux3271 with the following parameters:
-fastq_maxdiffs 99, -fastq_pctid 75, -fastq_trunctail 0. Adaptor
sequences were removed using CUTADAPT71 (single-end mode, with
default parameters). All sequences that did not contain the appro-
priate adaptor sequences were filtered out in this step using the
--discard-untrimmed parameter. The remaining pre-processing steps
(quality filtering, dereplication, chimera filtering, and pre-clustering)
were carried out using the VSEARCH suite v2.9.172. Quality filtering
was performed using the --fastq_filter VSEARCH utility (parameters:
--fastq_maxee 1, --minlen 300). Sequences were dereplicated with
--derep_fulllength (parameters: --sizeout, --relabel Uniq), first at the
sample level, and then at the combined dataset level after con-
catenating all sample files into one large FASTA file, which was also
filtered for singletons (sequences occurring only once in the entire
dataset and a priori considered as noise; parameters: --minuniquesize
2, --sizein, --sizeout, --fasta_width 0). To save processing power, a pre-
clustering step (at 98% identity) was employed before chimera fil-
tering using the --cluster_size VSEARCH utility with the centroids
algorithm (parameters: --id 0.98, --strand plus, --sizein, --sizeout,
--fasta_width 0, --centroids). Chimeric sequences were then detected
and filtered out from the resulting file using the VSEARCH --uchi-
me_denovo utility (parameters: --sizein, --sizeout, --fasta_width 0,
--nonchimeras).
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A customperl script obtained from the authors of VSEARCH (see
https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline) was
then used to regenerate the concatenated FASTA file, but without the
previously detected chimeric sequences. The resulting chimera-
filtered file was then used to cluster the reads into OTUs using
SWARM v.3.1.073 (parameters: -d 13 -z). The value for the d parameter
was chosen based on the experiments of Antich et al.74. The OTU
representative sequences were then sorted using VSEARCH (para-
meters: --fasta_width 0 --sortbysize) and an OTU table was con-
structed from the resulting FASTA file using the VSEARCH utility
--usearch_global (parameters: --strand plus --sizein --sizeout --fasta_-
width 0). To reduce the risk of false positives, a cleaning step was
employed that excluded read counts in the OTU table constituting
<0.01% of the total number of reads in the sample. OTUs were
additionally removed from the results based on negative control
samples, i.e. if the number of reads for the OTU in any sample was
less than the maximum among negative controls, those reads were
excluded from further analysis. OTU representative sequences were
blasted (parameters: programme: Megablast; maximum hits: 1;
scoring (match mismatch): 1-2; gap cost (open extend): linear; max E-
value: 10; word size: 28; max target seqs 100) against (1) a custom
database downloaded from GenBank (a local copy of the NCBI
nucleotide database downloaded from ftp://ftp.ncbi.nlm.nih.gov/
blast/db/), and (2) a custom database built from data downloaded
from BOLD (www.boldsystems.org75,76) including taxonomy and BIN
information, by means of Geneious (v.10.2.5 – Biomatters, Auckland,
New Zealand). All available Animalia data was downloaded from the
BOLD database on 29 July 2022 using the available public data API
(http://www.boldsystems.org/index.php/resources/api) in a com-
bined TSV file format. The combined TSV file was then filtered to
keep only the records that: (1) had a sequence (field 72, “nucleo-
tides”); (2) had a sequence that did not hold exclusively one or more
“-” (hyphens); had a sequence that did not contain non-IUPAC char-
acters; (3) belonged to COI (the pattern “COI-5P” in either field 70
(“markercode”) or field 80 (“marker_codes”)); (5) had an available BIN
(field 8, “bin_uri”). In (5), an exception was made in cases where the
species belonging to that record did not occur with a BIN elsewhere
in the dataset. In other words, “BIN-less” records were kept if their
species were also completely BIN-less in the dataset.

The overall aim was to obtain a matrix of taxonomic units that
closely resembles the concept of species. Therefore, the COI
sequences were used to attribute Barcode Index Numbers (BINs),
which are clusters of barcode sequences that can be used as a proxy
taxonomic unit. BINs avoid the situation that in certain lineages there
are unequallymore OTUs even within a species. The allocation to BIN
units is a challenge, given today’s still very incomplete libraries. In
many regions, corresponding libraries are largely missing for large
species groups. This is true especially for groups harbouring “dark
taxa” such as dipterans, hymenopterans and hemipterans, but also
for large portions of other arthropod species, which are currently not
referenced for South America. For ecological analyses, the goal is to
assign the sequences to units representing the solution of species
themselves and to derive ecological properties from the sequence
information. For this purpose, we have developed the following
procedure. The sequences are assigned to the next existing BIN from
the studied and neighbouring countries reporting the genetic dis-
tance. This proximity and the information to which family, genus or
species the sequence belongs is reported. Thus, BINs with a distance
< are seen as identified species, while for those with a distance >3%
function as “genetic morpho-species” in the ecological analyses77. On
this basis, all sequences across all lineages receive a reasonably
balanced assignment to taxonomic units (and/or interim species
identifications such as the BIN) and information on ecological
properties, e.g. pollination78, is provided at different levels (species,
genus, family).

The dataset was then filtered to include only South American
records, and in the followingway: (1) recordswere kept that contained,
in field 55 (“country”), the South American country names: Argentina,
Bolivia, Brazil, Chile, Colombia, Ecuador, Falkland Islands, French
Guiana,Guiana, Paraguay, Peru, Suriname,Uruguay, andVenezuela; (2)
records were additionally kept if their latitude (field 47, “lat”) was
between -58.4 and 17 and their longitude (field 48, “lon”) was between
−85.8 and −30.3. These values were found by taking the extreme north
(Punta Gallinas), south (Cape Forward), east (Ponta do Seixas), and
west (Punta Parinas) points of the continent. As a buffer, 500 kmwere
added due north, south, east, and west, respectively of those geo-
graphic points using the “Measure on Map” function of SunEarth-
Tools.com. It was then noted that a large part of the dataset, thus
filtered, held also records from several Central American countries, in
particular Costa Rica, whose biodiversity on BOLD dwarfs all other
South American countries. Thus, a decision was made to additionally
include all remaining records from Costa Rica. Finally, a FASTA file
annotated with a Process ID (field 1, “processid”), BIN (field 8), tax-
onomy (fields 10, 12, 14, 16, 18, 20, 22 - “phylum_name”, “class_name”,
“order_name”, “family_name”, “subfamily_name”, “genus_name”, “spe-
cies_name”), geo location data (fields 47, 48, 55), and GenBank ID (field
71, “genbank_accession”) was created from the filtered combined TSV
file, and then converted into a BLAST database using Geneious v10.2.6
(Biomatters, Auckland, New Zealand). The results were exported and
further processed according to methods described by Uhler et al.77.
Briefly, the resulting csv files, which included the OTU ID, BOLD Pro-
cess ID, BIN, Hit-%-ID value (percentage of overlap similarity (identical
base pairs) of an OTU query sequence with its closest counterpart in
the database), Grade-%-ID value (combining query coverage, E-value
and identity values for each hit with weights of 0.5, 0.25 and 0.25
respectively, allowing determination of the longest, highest-identity
hits), the length of the top BLAST hit sequence, as well as the phylum,
class, order, family, genus and species information for each detected
OTU were exported from Geneious and combined with the OTU table
generated by the bioinformatic pre-processing pipeline. As an addi-
tional measure of control other than BLAST, the OTUs were classified
into taxa using the Ribosomal Database Project (RDP) naïve Bayesian
classifier79 trained on a cleaned COI dataset of Arthropods and Chor-
dates (plus outgroups; see Porter & Hajibabei80). OTUs were also
annotated with the taxonomic information from the NCBI (down-
loaded from “https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/“), followed
by the creation of a taxonomic consensus between BOLD, NCBI
and RDP.

By restricting the library to BINs with georeferenced records from
Central and South America, we limit the references in such a way that,
for example, a newly introduced species from New Zealand would not
be recognized without a reference from South America. Conversely,
blasts against the global database showed that a vast number of spe-
cies identifications appear, which is completely implausible and com-
plicates further ecological interpretations. The final data set of
arthropods comprised 4557 BINs from 24 orders dominated by Lepi-
doptera (40%) followed by Diptera (32 %), Hemiptera (10%), Hyme-
noptera (7%), Coleoptera (6%) and Trichoptera (2%).

Statistical analyses
All statistical analyses were performed in R v. 3.6.3 (Sound indices on
high performance cluster) and 4.1.2 (all other analyses)81. We first cal-
culated the richness of vocalizing vertebrates per plot and the richness
of species observed in the old-growth forest plots as two measures of
richness. We then applied non-metric multidimensional scaling ordi-
nation (NMDS) using the function metaMDS in the package “vegan”82

with the Bray-Curtis distance to the community data.Here the function
applies a principal component analysis (PCA) on final NMDS values in
order to rotate the resulting axes such that the first axis accounts for
maximum variance (first principal component). In this way, a major
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first and second axis can be calculated as in other ordinations. The
score of the first axis was extracted as baseline for further modelling.
As this axis revealed a linear gradient of community recovery (Fig. 2a),
we generally hypothesized a similar relationship for other indicators,
too, and applied linear models in subsequent analyses. The same
technique was applied to the community of bird species derived from
the CNN analyses as well as to the insect communities identified by
metabarcoding.

We finallymodelled the axis scores and the two richness values of
the vocalizing vertebrate communities, as well as the first axis of
nocturnal insect communities with the acoustic indices, which were
averaged over the whole two-week period using all sound files col-
lected, and the first axis of CNN-based bird communities using a linear
Gaussian model. We used the samemodel for richness values after log
transformation to obtain comparable adjusted R² for all models. To
check the residuals of our models for spatial independence, we used
cross-correlograms provided in the package “ncf”83. These showed
spatial independence of the residuals in all six models (Fig. S4). To test
the difference in predictions of Community axis scores by acoustic
indices and observed scores based on expert identification we used a
linear mixed model and a recovery category specific estimate of the
method with plot as random effect to take into account that two
observations were from the same plot.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data for all analyses generated in this study are publicly available
from Figshare (https://doi.org/10.6084/m9.figshare.23620323). For the
review process, data are available from Figshare (https://figshare.com/s/
6db91d2e9b1efd13215b). The FASTQ raw files for metabarcoding of
nocturnal insects generated in this study as well as BIN-Plot community
data with additional information on BINs by BOLD are publicly available
from Dryad (https://doi.org/10.5061/dryad.59zw3r2dm). ImageNet
(https://www.image-net.org/) was used to pre-train convolutional neural
network for AI bird identification. Insect sequences from light trapping
were blasted against GenBank (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) and
BOLD (www.boldsystems.org).

Code availability
Annotated R code, including the data needed to reproduce the sta-
tistical analyses andfigures, is publicly available fromFigshare (https://
doi.org/10.6084/m9.figshare.23620323).
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